

BỘ KHOA HỌC VÀ CÔNG NGHỆ

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

BÙI VĂN CÔNG

NGHIÊN CỨU PHƯƠNG PHÁP PHÁT HIỆN

LỖ HỔNG MÃ NGUỒN DỰA TRÊN ĐỒ THỊ

ĐẶC TRƯNG MÃ

Chuyên ngành: Kỹ thuật máy tính

Mã số: 9.48.01.06

TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT

HÀ NỘI - 2025

Công trình hoàn thành tại:

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

Người hướng dẫn khoa học:

PGS. TS. Đỗ Xuân Chợ

PGS. TS. Đỗ Trung Tuấn

Phản biện 1:

Phản biện 2:

Phản biện 3:

Luận án được bảo vệ trước Hội đồng chấm Luận án cấp Học viện

họp tại:

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

Km10, Đường Nguyễn Trãi, Quận Hà Đông, Hà Nội.

Vào hồi: giờ 00, ngày tháng năm 2025

Có thể tìm hiểu luận án tại:

1. Thư viện Quốc gia Việt Nam

2. Thư viện Học viện Công nghệ Bưu chính Viễn thông

1

MỞ ĐẦU

1. GIỚI THIỆU

Đảm bảo chất lượng phần mềm đòi hỏi đánh giá và phát hiện

lỗ hổng hiệu quả, chủ yếu qua hai phương pháp: dựa trên tập luật

và dựa trên đặc trưng bất thường. Để nâng cao độ chính xác, cần

cải thiện hai bước: trích xuất và phân loại đặc trưng mã nguồn.

Về trích xuất, luận án lựa chọn phương pháp dựa trên đồ thị CPG

do khả năng biểu diễn mối quan hệ phức tạp và độ chính xác cao.

Về phân loại, các phương pháp hiện tại chưa hiệu quả với các bộ

dữ liệu mất cân bằng. Do đó, luận án tập trung đề xuất cải tiến cả

hai quá trình nói trên nhằm phát hiện lỗ hổng mã nguồn tốt hơn

trên các bộ dữ liệu mất cân bằng.

2. MỤC TIÊU, ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU

CỦA LUẬN ÁN

Mục tiêu của luận án: Tập trung phát triển phương pháp phát

hiện lỗ hổng dựa trên phân tích đồ thị đặc trưng mã nguồn, nhằm

đề xuất mô hình mới giúp nâng cao độ chính xác và khắc phục

khó khăn trong trích xuất, lựa chọn, phân loại mã nguồn.

Đối tượng nghiên cứu:

• Các mã nguồn C/C++ và các lỗ hổng phổ biến như tràn

bộ đệm, lỗi cú pháp, lỗi con trỏ,...

• Các công nghệ, kỹ thuật, quy trình phân tích mã nguồn.

• Một số hướng tiếp cận trong phát hiện lỗ hổng mã nguồn

dựa trên thuật toán học máy, học sâu,…

2

Phạm vi nghiên cứu: Tập trung vào lý thuyết nền tảng, các

phương pháp biểu diễn, phân tích, phát hiện lỗ hổng trong mã

nguồn C/C++, dựa trên các NC đã công bố trong và ngoài nước.

3. PHƯƠNG PHÁP NGHIÊN CỨU

Luận án kết hợp nghiên cứu lý thuyết và thực nghiệm, trong

đó lý thuyết phục vụ các nhiệm vụ cụ thể sau:

• NC nền tảng lý thuyết về phát hiện lỗ hổng mã nguồn;

• NC nền tảng lý thuyết về học máy, học sâu cho luận án;

• Khảo sát, đánh giá các đề xuất, giải pháp đã có cho phát

hiện lỗ hổng mã nguồn, trên cơ sở đó tổng hợp các ưu

điểm, nhược điểm làm cơ sở cho đề xuất của luận án;

• Lựa chọn, đề xuất các đặc trưng, xây dựng các mô hình

phát hiện lỗ hổng mã nguồn dựa trên CPG.

Phương pháp thực nghiệm được sử dụng trong luận án:

• Khảo sát các tập dữ liệu về lỗ hổng và lựa chọn tập dữ

liệu phù hợp cho thực nghiệm;

• Thử nghiệm và so sánh các mô hình phát hiện lỗ hổng

được đề xuất với các mô hình hiện có.

4. CÁC ĐÓNG GÓP CỦA LUẬN ÁN

Luận án có hai đóng góp chính đó là:

Đóng góp thứ nhất của luận án là đề xuất phương pháp kết

hợp RoBERTa và GCN trong trích xuất các đặc trưng quan trọng

từ CPG, cùng kỹ thuật cân bằng dữ liệu, nhằm nâng cao hiệu quả

phân tích và phát hiện lỗ hổng mã nguồn.

Đóng góp thứ hai của luận án là đề xuất hướng tiếp cận

mới giữa mạng đồ thị học sâu GGNN trong trích xuất đặc trưng

3

mã nguồn và phương pháp học tương phản, giúp nâng cao độ

chính xác trong phát hiện lỗ hổng mã nguồn, mở ra tiềm năng áp

dụng cho các bài toán phân loại khác.

5. BỐ CỤC CỦA LUẬN ÁN

Chương 1. Tổng quan về lỗ hổng mã nguồn và vấn đề

phát hiện lỗ hổng mã nguồn

Chương 1 trình bày tổng quan về lỗ hổng mã nguồn, gồm

khái niệm, phân loại, ảnh hưởng, các phương pháp biểu diễn và

phát hiện, đồng thời khảo sát nghiên cứu trong và ngoài nước làm

cơ sở đề xuất cho luận án.

Chương 2. Đề xuất phương pháp phát hiện lỗ hổng mã

nguồn dựa trên mô hình kết hợp

Chương 2 trình bày mô hình kết hợp mới gồm hai nhiệm vụ:

trích xuất đặc trưng mã nguồn bằng mạng đồ thị và xử lý ngôn

ngữ tự nhiên, cùng kỹ thuật sinh dữ liệu; cuối chương là phần

thực nghiệm và đánh giá mô hình.

Chương 3. Cải thiện hiệu quả mô hình phát hiện lỗ hổng

mã nguồn dựa trên kỹ thuật học biểu diễn

Chương 3 đề xuất hướng tiếp cận mới nhằm cải thiện trích

xuất đặc trưng mã nguồn bằng GGNN và phát hiện lỗ hổng qua

học tương phản. Nội dung gồm: kiến trúc mô hình, lý thuyết học

biểu diễn, kỹ thuật cân bằng dữ liệu qua phân phối Bernoulli

trong tầng Dropout của mạng CNN, và phần thực nghiệm đánh

giá.

Phần cuối cùng của luận án chính là một số kết luận và định

hướng phát triển nghiên cứu tiếp theo.

4

CHƯƠNG 1. LỖ HỔNG MÃ NGUỒN VÀ VẤN ĐỀ PHÁT HIỆN

LỖ HỔNG MÃ NGUỒN

Tổng quan về lỗ hổng mã nguồn C/C++

Định nghĩa 1.1. Lỗ hổng phần mềm là những điểm yếu trong

quá trình phân tích, thiết kế mã nguồn hoặc vận hành hệ thống

mà kẻ tấn công có thể lợi dụng để gây ra sự cố mất an toàn trong

triển khai phần mềm.

Những kẻ tấn công sẽ lợi dụng những sai sót này để làm mất

an toàn của hệ thống.

Định nghĩa 1.2. Lỗ hổng mã nguồn là những điểm sai sót

trong mã lập trình của phần mềm, có thể bị khai thác để gây hại

cho hệ thống hoặc người dùng.

Phần mềm lớn thường do nhiều nhóm phát triển với công cụ

khác nhau, dễ dẫn đến sai sót tiềm ẩn – nguyên nhân gây ra lỗ

hổng phần mềm.

Theo Grampp và Morris cùng McGraw, có thể phân loại lỗ

hổng phần mềm theo hai đặc tính kỹ thuật hay mức mã nguồn:

1. Phân theo đặc tính kỹ thuật: Dựa theo ba tiêu chí: (i) khu

vực phát sinh lỗ hổng; (ii) các khiếm khuyết của hệ

thống thông tin; và (iii) vị trí xuất hiện các lỗ hổng.

2. Phân loại lỗ hổng theo mức mã nguồn: Tập trung phân

tích, phát hiện các lỗ hổng dựa trên mã nguồn ứng dụng.

Một số lỗ hổng phổ biến thường gặp trong C/C++ dưới đây

Bảng 1.1. Danh sách lỗ hổng mã nguồn phổ biến trong C/C++

TT Lỗ hổng C/C++ Giải thích

1 Buffer OverFlow Lỗi tràn bộ đệm

2 Insecure Data Storage Lưu trữ dữ liệu không an toàn.

5

Vấn đề phát hiện lỗ hổng mã nguồn C/C++

Thường dựa trên hai phương pháp chính:

1. Phát hiện lỗ hổng C/C++ dựa trên dấu hiệu: Bằng cách

so khớp với dữ liệu lỗ hổng đã biết, qua các phương pháp

như đối chiếu mẫu, phân tích từ vựng, phân tích luồng dữ

liệu, cùng các công cụ Flawfinder, KLEE,...

2. Phát hiện dựa trên đặc trưng bất thường: Thường phân

tích, dự đoán bằng một số thuật toán học máy, học sâu

Các nghiên cứu liên quan

Dưới đây là bảng danh sách thống kê các công trình nghiên

cứu được công bố trong 5 năm trở lại đây:

Bảng 1.5. Danh sách các nghiên cứu về phát hiện lỗ hổng mã nguồn

Đề xuất
Phương pháp

trích xuất

Cân bằng

dữ liệu

Thuật toán

phân loại

Chakraborty và cộng

sự [59]
GGNN SMOTE

MLP và

triplet loss

Chunyong Zhang

cùng cộng sự [65]

Graph Attention

Network
SMOTE

Metric

Learning

Xiansheng Cao và các

cộng sự [56]

GCN cho CPG

BiLSTM cho AST
Không Softmax

Wenjing Cai và các

cộng sự [102]

Chuyển đổi đồ thị

CPG
Không TextCNN

Ruitong Liu cùng

đồng nghiệp [51]
CodeLM + GNN Không Sigmoid

Amanpreet Singh

Saimbhi [54]
CNN cho CPG Không

Fully-

connected

3 Dynamic memory errors
Quản lý không chính xác bộ nhớ

động và con trỏ động

4 Invalid conversion Ép kiểu sai

5 Sotfware Bugs Lỗi trong phần mềm

6
Cannot convert 'type1' to

'type2'
Truyền sai kiểu tham số cho hàm

7 Format string vulnerabilities Lỗi về định dạng của chuỗi

8 Insecure cryptography Mật mã không an toàn.

6

Tổng quan kiến trúc mô hình phân loại lỗ hổng mã nguồn

Hình 1.2. Mô hình tổng quát bài toán phát hiện lỗ hổng mã nguồn

Dựa trên hình 1.2 có thể thấy từ khối (1), khối (2) là quá trình

chuẩn hoá và phân tích mã nguồn thông qua việc biểu diễn mã

nguồn dưới dạng CPG. Điều này giúp cho việc biểu diễn các

thông tin thuộc tính của mã nguồn như biến, hàm,… được đầy đủ

hơn. Qua đó loại bỏ được các đoạn mã dư thừa như các khoảng

trắng, các ký tự đặc biệt, các dòng chú thích,… Khối (3) là trích

xuất đặc trưng mã nguồn, có thể sử dụng một số phương pháp

phổ biến như Word2Vec, RoBERTa, DGCNN, GCN,

GGNN,…Khối (4) là phân loại mã nguồn, có thể sử dụng một số

hàm như Fully Connected, Softmax,…

Biểu diễn mã nguồn

Xét ví dụ dưới đây về đoạn mã ban đầu:

Hình 1.3. Đoạn mã ban đầu của một chương trình

Từ đoạn mã (hình 1.3), biểu diễn mã nguồn về dạng đồ thị:

1. Biểu diễn mã nguồn với AST

7

Định nghĩa 1.3. Cây cú pháp trừu tượng AST là cây biểu

diễn cấu trúc cú pháp của mã nguồn, được xây dựng sau khi

chương trình được phân tích cú pháp nhưng bỏ qua các chi tiết

không cần thiết như dấu ngoặc, dấu chấm phẩy…

2. Biểu diễn mã nguồn với CFG

Định nghĩa 1.4. Đồ thị luồng điều khiển CFG là một đồ thị

có hướng, trong đó:mỗi đỉnh đại diện cho một khối mã, một chuỗi

các câu lệnh liên tiếp không có nhánh rẽ; mỗi cạnh đại diện cho

khả năng chuyển hướng thực thi từ khối này sang khối khác.

3. Biểu diễn mã nguồn với PDG

Định nghĩa 1.5. Đồ thị phụ thuộc chương trình PDG là đồ

thị biểu diễn các phụ thuộc dữ liệu và điều khiển giữa các thành

phần mã nguồn, giúp hiểu rõ luồng thông tin và điều kiện thực

thi trong chương trình.

4. Biểu diễn mã nguồn với CPG

Định nghĩa 1.6. Đồ thị đặc trưng mã nguồn CPG là một đồ

thị có hướng, biểu diễn các thực thể cú pháp, dữ liệu và điều

khiển trong chương trình phần mềm, được thiết kế để phân tích

bảo mật, học máy và truy vấn mã nguồn.

Hình 1.7. Biểu diễn mã nguồn về dạng CPG

Một CPG bao gồm các thành phần biểu diễn chính:

8

• Các nút và kiểu nút: Các nút trong CPG đại diện một

thành phần trong mã nguồn như lớp, phương thức,...

• Cạnh có hướng đánh nhãn: Biểu diễn quan hệ giữa các

thành phần chương trình thông qua các nút tương ứng.

• Các cặp key-value: Các nút chứa các cặp thuộc tính key-

value nơi các key hợp lệ phụ thuộc vào kiểu nút.

Trích xuất đặc trưng mã nguồn dưới dạng CPG

Để trích xuất đặc trưng từ CPG, các nghiên cứu thường dùng

mạng đồ thị học sâu như GCN, DGCNN, GGNN,...

Cân bằng dữ liệu

Một số kỹ thuật như: kỹ thuật giảm mẫu lớp đa số; tăng mẫu

lớp thiểu số; hay tăng mẫu ngẫu nhiên; kỹ thuật SMOTE.

Phân loại mã nguồn

Một số phương pháp, hàm phân loại phổ biến như: phân loại

dựa trên học máy, học tương phản, hàm tương phản,...

Kết luận chương 1

Chương 1 đã trình bày tổng quan về lỗ hổng mã nguồn, đặc

biệt mã nguồn C/C++, làm rõ tính cấp thiết của việc phát hiện

sớm các lỗ hổng. Kết quả phân tích giúp xác định mục tiêu, định

hướng nghiên cứu, là cơ sở cho đề xuất ở Chương 2 và 3 tiếp theo

9

CHƯƠNG 2. ĐỀ XUẤT PHƯƠNG PHÁP PHÁT HIỆN

LỖ HỔNG MÃ NGUỒN DỰA TRÊN MÔ HÌNH KẾT HỢP

Cơ sở khoa học của đề xuất

Luận án đề xuất kết hợp RoBERTa và GCN để khai thác hiệu

quả đặc trưng trên CPG, đồng thời sử dụng kỹ thuật BDC (BDC

là kỹ thuật sinh dữ liệu mới cho lớp thiểu số thông qua phân phối

Bernoulli trong tầng Dropout của mạng CNN) thay thế SMOTE

nhằm sinh dữ liệu thực tế và giảm nhiễu.

Đề xuất mô hình GRB trong phát hiện lỗ hổng mã nguồn

Kiến trúc tổng quát của mô hình GRB

Hình 2.1. Các thành phần và nguyên tắc hoạt động của mô hình GRB

Nguyên tắc trích xuất thông tin của mô hình GRB

Luận án đề xuất chuẩn hóa mã nguồn thành CPG để thuận

tiện trích xuất đặc trưng. Đỉnh và cạnh được mã hóa bằng one-

hot; đoạn mã trên đỉnh được nhúng bằng RoBERTa. Các đặc

10

trưng sau đó được tổng hợp và đưa vào GCN để trích xuất hồ sơ

hành vi mã nguồn. Đây là hướng tiếp cận mới giúp trích xuất

được đầy đủ hơn các thành phần đặc trưng từ CPG.

Xây dựng hồ sơ đặc trưng của mã nguồn dựa trên CPG

Qua hình 2.1, việc xây dựng hồ sơ đặc trưng của mã nguồn

chính là sự kết hợp chuẩn hoá đặc trưng cạnh và tổng hợp thông

tin của đỉnh. Từ đó đưa qua GCN để trích xuất các đặc trưng.

1. Xây dựng hồ sơ đặc trưng từ tổng hợp thông tin đỉnh

• Sử dụng RoBERTa để trích xuất đặc trưng ngữ nghĩa và

cú pháp từ mã trên đỉnh CPG gồm: (1) tiền xử lý và huấn

luyện lại BPE phù hợp; (2) mã hóa mã nguồn thành

vector đặc trưng qua tầng nhúng và encoder.

• Đặc trưng đỉnh (IfStatement, Variable, Return,...) được

one-hot hóa thành ma trận kích thước 𝑁×𝐾.

2. Chuẩn hoá đặc trưng cạnh: Các cạnh CPG (AST,

ControlFlow,...) được one-hot hóa với chỉ số riêng, biểu

diễn quan hệ đỉnh bằng vector nhị phân để GCN nhận

diện luồng thông tin.

3. Trích xuất đặc trưng CPG bằng GCN: Mỗi lớp GCN lan

truyền và tổng hợp thông tin từ các đỉnh lân cận, sử dụng

phép “tích chập” tương tự CNN để trích xuất đặc trưng

theo công thức sau:

𝐻(𝑙+1) = 𝜎 (𝐷̃−
1

2𝐴̃𝐷̃−
1

2𝐻(𝑙)𝑊(𝑙)) + 𝐻(𝑙) (2.1)

Kỹ thuật cân bằng dữ liệu dựa trên phân bố Bernoulli

11

Định nghĩa 2.1. Phân phối nhị phân Bernoulli mô tả kết quả

của một phép thử chỉ có hai khả năng xảy ra: 1 (thành công) với

xác suất 𝑝, và 0 (thất bại) với xác suất 1- 𝑝.

Định nghĩa 2.2. Phân bố Bernoulli trong phân loại lỗ hổng

mã nguồn là một mô hình xác suất mô tả khả năng một đoạn mã

cụ thể có chứa lỗ hổng hay không.

Với biến ngẫu nhiên 𝑎𝑘 đại diện trạng thái của đoạn mã:

• 𝑎𝑘 = 1: đoạn mã có chứa lỗ hổng

• 𝑎𝑘 = 0: đoạn mã không có lỗ hổng

Việc sử dụng BDC cho cân bằng dữ liệu, biểu diễn vector

𝑥 = (𝑥1, 𝑥2, . . . 𝑥𝑑), mỗi thành phần 𝑥𝑘 (𝑘 = 1, 2, . . . 𝑑) sẽ là:

𝑥𝑘̂ = 𝑎𝑘 . 𝑥𝑘 (2.2)

Với 𝑎𝑘 ∼ 𝑃 là một biến ngẫu nhiên có phân phối Bernoulli:

(2.3)

Ở mỗi lần thử nghiệm trong bài toán sinh dữ liệu ở lớp thiểu

số (tức lớp có lỗ hổng), phân phối Bernoulli sẽ:

1. Sinh ngẫu nhiên một giá trị theo phân bố Bernoulli

2. Kết quả trả về 0 (không có lỗ hổng), 1 (có lỗ hổng)

• Với xác suất 𝑝, nhận giá trị 1

• Với xác suất 1 – 𝑝, nhận giá trị 0

Quá trình sinh dữ liệu theo Bernoulli chia làm hai bước:

Bước 1: Chọn một xác suất 𝑝 ∈ [0,1]

Bước 2: Sinh ngẫu nhiên một số 𝑥𝑘 ∈ [0,1], từ phân bố đều

với điều kiện

12

• 𝑥𝑘 ≤ 𝑝 cho kết quả là 1

• 𝑥𝑘 > 𝑝 cho kết quả là 0

Thuật toán 2.1: Cân bằng dữ liệu sử dụng BDC

Input: Đặc trưng -𝑑𝑎𝑐_𝑡𝑟𝑢𝑛𝑔

 Nhãn dán -𝑛ℎ𝑎𝑛

 Tỷ lệ -𝛼

 Số lượng mẫu mới được sinh ra trên lớp thiểu số -𝑛

 𝐷 = { }

Output: 𝐷canbang

Function: 𝐵𝐷𝐶(𝑑𝑎𝑐_𝑡𝑟𝑢𝑛𝑔, 𝑛ℎ𝑎𝑛, 𝛼 = 0.1, 𝑛 = 10):

 for 𝑓𝑖, 𝑙𝑖 ∈ 𝑑𝑎𝑐_𝑡𝑟𝑢𝑛𝑔, 𝑛ℎ𝑎𝑛 do:

if 𝑙𝑖 𝑜𝑓 𝑙𝑜𝑝_𝑡ℎ𝑖𝑒𝑢_𝑠𝑜 do:

 for 𝑡: = 1 to 𝑛 do:

 𝑓′𝑖 ←
 𝑡𝑎𝑜_𝑑𝑢_𝑙𝑖𝑒𝑢_𝑙𝑜𝑝_𝑡ℎ𝑖𝑒𝑢_𝑠𝑜_𝑡ℎ𝑒𝑜_𝑡𝑦_𝑙𝑒(𝛼)

 𝑇ℎ𝑒𝑚 𝑓′𝑖 𝑣à𝑜 𝐷

 end

end

 end

return 𝐷𝑐𝑎𝑛𝑏𝑎𝑛𝑔

Từ thuật toán 2.1 có thể thấy:

Bước 1: Tìm kiếm đặc trưng của lớp thiểu số

Bước 2: Lặp các đặc trưng của lớp thiểu số, áp dụng BDC

sinh dữ liệu với lớp thiểu số.

Bước 3: Thêm dữ liệu sau khi sinh vào dữ liệu gốc.

Thuật toán phân loại

Luận án sử dụng hàm kết nối đầy đủ để phân loại.

Môt số kết quả thực nghiệm

1. Đánh giá mô hình đề xuất trên bộ dữ liệu Verum

13

Bảng 2.3. Kết quả thực nghiệm trên mô hình đề xuất GRB

Mô hình Kích thước Acc Pre Rec F1

GCN + RoBERTa + BDC 512 87.58 39.42 67.07 49.65

GCN + RoBERTa + BDC 256 87.0 37.79 65.68 47.97

GCN + RoBERTa + BDC 1024 85.23 39.69 65.59 48.95

2. Kết quả thực nghiệm 2

Đánh giá vai trò của GCN đối trong mô hình đề xuất

Bảng 2.4. Kịch bản đánh giá vai trò của GCN trong mô hình đề xuất

Hướng

tiếp cận
Mô hình

Kích

thước
Acc Pre Rec F1

Đề xuất GCN + RoBERTa + BDC 512 87.58 39.42 67.07 49.65

Thay thế

GCN

bằng

DGCNN

DGCNN+RoBERTa+BDC 512 85.67 39.29 65.24 49.04

DGCNN+RoBERTa+BDC 256 85.24 39.06 65.12 48.83

DGCNN+RoBERTa+BDC 1024 85.23 39.15 64.84 48.82

Không

sử dụng

GCN

RoBERTa+BDC 512 87.26 38.18 63.81 47.78

RoBERTa+BDC 256 86.74 36.84 63.45 46.62

RoBERTa+BDC 1024 87.24 38.21 64.65 48.04

Đánh giá vai trò của RoBERTa đối với mô hình đề xuất

Bảng 2.5. Kết quả thực nghiệm đánh giá vai trò RoBERTa

Hướng tiếp cận Mô hình Acc Pre Rec F1

Đề xuất luận án GCN+RoBERTa+BDC 87.58 39.42 67.07 49.65

Thay thế RoBERTa

bằng BERT
GCN+BERT+BDC 86.86 37.61 66.83 48.13

14

Hướng tiếp cận Mô hình Acc Pre Rec F1

Thay thế RoBERTa

bằng Word2Vec
GCN+Word2Vec+BDC 86.22 37.48 66.3 48.03

Thay thế RoBERTa

bằng Doc2Vec
GCN+Doc2Vec+BDC 85.79 37.62 65.66 47.83

Không sử dụng

RoBERTa
GCN+BDC 82.16 26.72 54.82 35.93

Đánh giá vai trò của mô hình kết hợp GCN và RoBERTa

Bảng 2.6. Kết quả khi không sử dụng mô hình GCN kết hợp RoBERTa

Mô hình Acc Pre Rec F1

Đề xuất của luận án 87.58 39.42 67.07 49.65

GGNN + BDC 83.38 29.40 58.62 39.17

GGNN 83.05 28.76 58.02 38.46

Đánh giá vai trò BDC trong mô hình đề xuất

Bảng 2.7. Kết quả thực nghiệm đánh giá vai trò BDC trong mô hình

Hướng

tiếp cận
Mô hình

Kích

thước
Acc Pre Rec F1

Đề xuất GCN+RoBERTa+BDC 512 87.58 39.42 67.07 49.6

Thay

thế

BDC

bằng

SMOTE

GCN+RoBERTa+SMOTE 512 87.05 37.89 65.5 48.01

GCN+RoBERTa+SMOTE 256 87.12 38.22 66.01 48.41

GCN+RoBERTa+SMOTE 1024 87.52 39.25 66.67 49.24

Không

sử dụng

BDC

GCN + RoBERTa 512 87.24 38.36 64.4 48.08

GCN + RoBERTa 256 86.6 37.15 63.73 47.55

GCN + RoBERTa 1024 87.21 38.13 64.41 47.9

15

3. Kết quả thực nghiệm 3: So sánh mô hình đề xuất với 1

số hướng tiếp cận khác trên cùng bộ dữ liệu
Bảng 2.8. Kết quả so sánh đề xuất mô hình luận án với các hướng tiếp

cận khác trên cùng bộ dữ liệu Verum và FFmpeg+Qume

Bộ dữ liệu Hướng tiếp cận Acc Pre Rec F1

Verum

Đề xuất của luận án 87.58 39.42 67.07 49.65

REVEAL 86.94 34.03 64.24 44.49

Russell 90.98 24.63 10.91 15.24

VulDeePecker 89.05 17.68 13.87 15.7

SySeVR 84.22 24.46 40.11 30.25

Devign 88.41 34.61 26.67 29.87

FFmpeg+Qume

Đề xuất của luận án 62.78 57.15 72.98 64.1

Russell 58.13 54.04 39.50 45.62

VulDeePecker 53.58 47.36 28.70 35.20

SySeVR 52.52 48.34 65.96 56.03

Devign 58.57 53.60 62.73 57.18

REVEAL 62.51 56.85 74.61 64.42

Kết luận chương 2

Các kết quả chính trong Chương 2 gồm:

(1). Đề xuất mô hình GRB kết hợp xử lý ngôn ngữ tự nhiên

và mạng đồ thị học sâu nhằm nâng cao hiệu quả trích

xuất đặc trưng mã nguồn C/C++ dưới dạng đồ thị CPG;

(2). Đề xuất kỹ thuật sinh dữ liệu mới hiệu quả hơn phương

pháp truyền thống, mở ra hướng tiếp cận mới cho bài

toán cân bằng dữ liệu, đặc biệt với mã nguồn C/C++.

16

CHƯƠNG 3. CẢI THIỆN HIỆU QUẢ MÔ HÌNH PHÁT HIỆN

LỖ HỔNG MÃ NGUỒN DỰA TRÊN KỸ THUẬT HỌC BIỂU DIỄN

Cơ sở khoa học của đề xuất

Luận án đề xuất mô hình DrCSE, kết hợp GGNN và học

tương phản với hàm mất mát Entropy chéo để trích xuất và phân

loại đặc trưng mã nguồn C/C++. GGNN khắc phục hạn chế của

GCN và tích hợp GloVe để cải thiện biểu diễn ngữ nghĩa. Kỹ

thuật học tương phản giúp xử lý nhiễu do sinh dữ liệu, nâng cao

hiệu quả phân loại lỗ hổng.

Kiến trúc tổng quát của mô hình DrCSE

Hình 3.1. Kiến trúc của mô hình DrCSE

Nguyên tắc trích xuất đặc trưng của mô hình

Trích xuất đặc trưng CPG trên đỉnh dùng hàm GloVe

17

Sau khi biểu diễn mã nguồn dưới dạng CPG, luận án trích

xuất đỉnh và nội dung liên quan, trong đó mỗi đỉnh đại diện cho

các thành phần như câu lệnh, biểu thức, biến, hàm, định nghĩa

hoặc sử dụng biến. Nội dung từ mỗi đỉnh (ví dụ: tên hàm, giá trị

biến) được chuyển thành chuỗi văn bản và mã hóa bằng GloVe.

Quy trình mã hóa: (1) tiền xử lý văn bản đỉnh, (2) chuyển

văn bản thành vector đặc trưng 𝐸𝑣 bằng GloVe, (3) kết hợp 𝐸𝑣

với vector one-hot biểu diễn loại đỉnh 𝑇𝑣, tạo thành vector đặc

trưng tổng hợp 𝑋𝑣 cho đỉnh 𝑣. Tính theo công thức GloVe.

𝜔𝑖
𝑇ῶ𝑗 + а𝑖 + ã𝑗 = log(𝑋𝑖𝑗) (3.1)

Trong đó:

• 𝜔𝑖: Vector biểu diễn từ mục tiêu của từ 𝑖

• ῶ𝑗: Vector biểu diễn từ ngữ cảnh của từ 𝑗

• а𝑖, ã𝑗: bias của từ mục tiêu và từ ngữ cảnh

• 𝑋𝑖𝑗: Số lần từ 𝑗 xuất hiện trong ngữ cảnh của từ 𝑖

• log(𝑋𝑖𝑗): logarit của tần suất đồng xuất hiện

Để huấn luyện mô hình, luận án dùng hàm mất mát sau đây:

(3.2)

Trong đó: 𝑓(𝑋𝑖𝑗): Là hàm trọng số để giảm ảnh hưởng của

các cặp từ có tần suất cực lớn hoặc cực nhỏ.

Sau khi huấn luyện xong: Vector biểu diễn cuối cùng cho

mỗi từ là tổng của 2 vector được thể hiện qua công thức sau:

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝜔) = 𝜔𝑖 + ῶ𝑖 (3.3)

Trích xuất đặc trưng CPG trên cạnh sử dụng GGNN

18

Để trích xuất được những thông tin của những đỉnh này, luận

án sử dụng GGNN. Công thức 3.4 mô tả cách thức áp dụng mô

hình GGNN cho nhiệm vụ trích xuất thông tin của cạnh.

𝑋𝑔 = ∑ (𝐺𝑅𝑈(𝑋𝑣 , ∑ 𝑔(𝑋𝑢)

𝑢 ∈ 𝐸

))

𝑣 ∈ 𝑉

(3.4)

Trong đó:

𝐺𝑅𝑈(.) là hàm hồi tiếp có cổng,

𝑋𝑣 là vector đại diện của đỉnh 𝑣.

𝑔(.) hàm biến đổi giúp tổng hợp thông tin các đỉnh 𝑢 chính

là các đỉnh lân cận của đỉnh 𝑣 cùng vector đại diện 𝑋𝑢 tương ứng.

Thuật toán 3.1 dưới đây mô tả cách xây dựng hồ sơ đặc trưng

mã nguồn từ phương pháp phân tích CPG trong DrCSE.

 Thuật toán 3.1. Xây dựng hồ sơ đặc trưng mã nguồn

Input: Mã nguồn - 𝐶

Output: Vector đặc trưng 𝑥𝑔 đại diện cho 𝐶

Procedure:

Function 𝑔𝑟𝑎𝑝ℎ𝐸𝑚𝑏𝑒𝑑(𝐶):

 (𝑉, 𝐸) ← Code_property_graph (𝐶)

 for 𝑣 ∈ 𝑉 do:

 𝑇𝑣 ← 𝑜𝑛𝑒ℎ𝑜𝑡(𝑣. 𝑡𝑦𝑝𝑒())

 𝐶𝑣 ← 𝑔𝑙𝑜𝑣𝑒(𝑣. 𝑐𝑜𝑑𝑒())

 𝑥𝑣 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑇𝑣 , 𝐶𝑣)

 𝑋 ← 𝑥𝑣 ∪ 𝑋

 end

 𝑿′ ← 𝑮𝑮𝑵𝑵(𝑿, 𝑬)

 𝒙𝒈 ← 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆(𝑿′)

return 𝒙𝒈

Nâng cao hiệu quả phân loại sử dụng học tương phản

Cách thức hoạt động của phương pháp này như sau:

19

Giả sử ta có tập các điểm dữ liệu 𝐷 = {(𝑥𝑖, 𝑥𝑖
+, 𝑥𝑖

−)}. Trong

đó, 𝑥𝑖 và 𝑥𝑖
+ là hai điểm dữ liệu tương đồng hay có cùng nhãn, 𝑥𝑖

và 𝑥𝑖
− là hai điểm dữ liệu khác biệt hay khác nhãn. Gọi ℎ𝑖 , ℎ𝑖

+, ℎ𝑖
−

lần lượt là các vector đại diện của 𝑥𝑖, 𝑥𝑖
+, 𝑥𝑖

−, khi đó mục tiêu huấn

luyện một mini-batch N định nghĩa như sau:

(3.5)

Với 𝐿𝑖 được định nghĩa theo công thức (3.6) như sau:

Trong đó:

(3.6)

• 𝝉 là mức độ cân bằng giữa mẫu âm và mẫu dương,

• 𝑠𝑖𝑚 (ℎ1, ℎ2) là sự tương đồng cosine
ℎ1

𝑇 ℎ2

||ℎ1|| .||ℎ2||
,

• 1𝐵 = 1 khi B đúng, ngược lại 1𝐵 = 0,

• 𝑁𝑦 là tổng số mẫu trong mini-batch có cùng nhãn 𝑦,

• 𝑖 là chỉ số của ví dụ trong mini-batch,

• 𝑘 là chỉ số của các ví dụ khác trong mini-batch có cùng

nhãn với chỉ số của ví dụ 𝑖 hay 𝑥𝑘 = 𝑥𝑖
+,

• 𝑗 là chỉ số của các ví dụ có chỉ số 𝑖 trong mini-batch.

Phương trình trên, ℎ𝑘 chính vector đại diện của 𝑥𝑖
+. Đồng

thời, nghiên cứu sử dụng nhúng đồ thị để trích xuất vector đại

diện ℎ = 𝑓𝛩(𝑥) = 𝑔𝑟𝑎𝑝ℎ𝐸𝑚𝑏𝑒𝑑(𝑥) sau đó huấn luyện mô hình

sử dụng mục tiêu học tương phản (phương trình 3.6).

Hàm mất mát Entropy chéo (Cross-Entropy Loss)

20

Với một bài toán phân loại, hàm mất mát Entropy chéo thể

hiện qua công thức (3.7):

Trong đó,

(3.7)

• ℎ𝑖 là vector biểu diễn của 𝑥𝑖,

• 𝜎(𝑥) là hàm sigmoid.

Hàm mất mát Entropy chéo hoạt động hiệu quả trong tối ưu

hóa các mô hình phân loại nhờ các đặc điểm sau:

• Nhấn mạnh vào sai số lớn: Mô hình dự đoán xác suất

cho nhãn đúng gần 0, hàm mất mát lớn khuyến khích mô

hình điều chỉnh mạnh để cải thiện.

• Thường kết hợp với hàm Softmax, còn hàm mất mát

Entropy chéo tận dụng trực tiếp đầu ra Softmax để tính

toán mức độ sai lệch.

Thuật toán 3.3. Hàm mất mát Entropy chéo (Cross-Entropy)

 Input: Representation Model - 𝑅𝑀

 Balanced Dataset - 𝐷𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑

 Output: Cross Entropy Loss

 Procedure:

 Function 𝑐𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑅𝑀, 𝐷𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅):

 𝐿𝑐𝑒 ← 0

 for 𝑥𝑖 , 𝑙𝑖 ∈ 𝐷𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅 do:

 ℎ𝑖 ← 𝑅𝑀. 𝑒𝑛𝑐𝑜𝑑𝑒(𝑥𝑖)

 𝑦𝑖 ← 𝑅𝑀. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(ℎ𝑖)

 𝐿𝑖 ← 𝑦𝑖 . 𝑙𝑜𝑔 (𝜎(ℎ𝑖)) + (1 − 𝑦𝑖) . 𝑙𝑜𝑔(1 − 𝜎(ℎ𝑖))

 𝐿𝑐𝑒 ← 𝐿𝑐𝑒 + 𝐿𝑖

 end

 𝐿𝑐𝑒 ← − 𝐿𝑐𝑒 / 𝑁

21

 return 𝑳𝒄𝒆

Thử nghiệm và đánh giá mô hình đề xuất

Kết quả thực nghiệm kịch bản 1 với đề xuất DrCSE

Bảng 3.2. Kết quả thực nghiệm mô hình DrCSE

𝜏

𝛼

0.1 0.2 0.3

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

0.05 85.96 36.41 63.35 46.24 85.89 36.75 62.21 46.20 85.39 37.62 60.30 46.33

0.1 87.72 39.35 69.07 50.14 87.34 37.81 66.33 48.16 86.72 38.57 63.24 47.91

0.2 86.16 40.08 66.72 50.01 85.92 36.75 64.11 46.72 85.03 36.41 62.01 45.88

Kết quả thực nghiệm kịch bản 2

Bảng 3.3 dưới đây trình bày các kết quả của các mô hình

được đề xuất trong ARQ1, ARQ2 và ARQ3 thuộc kịch bản 2.

Bảng 3.3. Kết quả thực nghiệm kịch bản 2

RQ ARQ Hướng tiếp cận Acc Pre Rec F1

RQ1

ARQ1 SMOTE và Contrastive Loss 87.72 39.35 69.07 50.14

ARQ2

BDC và Triplet Loss 87.23 34.51 66.47 45.43

BDC và MLP 86.89 31.12 46.55 37.30

BDC và RF 85.25 29.34 47.09 36.15

RQ2 ARQ3 SMOTE + Triplet Loss 86.94 34.03 64.24 44.49

Dựa trên kết quả thực nghiệm tại bảng 3.3, thể hiện vai trò

khi sử dụng BDC, phương pháp học tương phản cho kết quả tốt

Kết quả thực nghiệm kịch bản 3: So sánh DrCSE với các

hướng tiếp cận khác trên cùng bộ dữ liệu Verum

22

Bảng 3.4. Kết quả thực nghiệm kịch bản 3

Hướng tiếp cận Accuracy Precision Recal F1-score

Mô hình đề xuất DrCSE 87.72 39.35 69.07 50.14

Mô hình đề xuất GRB 87.58 39.42 67.07 49.65

REVEAL 86.94 34.03 64.24 44.49

Russell 90.98 24.63 10.91 15.24

VulDeePecker 89.05 17.68 13.87 15.7

SySeVR 84.22 24.46 40.11 30.25

Devign 88.41 34.61 26.67 29.87

Kết quả thực nghiệm 4: So sánh DrCSE với các hướng

tiếp cận khác trên cùng bộ dữ liệu FFmpeg+Qemu

Bảng 3.5. Kết quả thực nghiệm kịch bản 4

Hướng tiếp cận Accuracy Precision Recal F1-score

Mô hình đề xuất DrCSE 64.37 58.19 76.29 66.02

Mô hình đề xuất GRB 87.58 39.42 67.07 49.65

Russell 58.13 54.04 39.50 45.62

VulDeePecker 53.58 47.36 28.70 35.20

SySeVR 52.52 48.34 65.96 56.03

Devign 58.57 53.60 62.73 57.18

REVEAL 62.51 56.85 74.61 64.42

Kết luận chương 3

Chương 3 trình bày mô hình DrCSE nhằm nâng cao hiệu quả

phân loại lỗ hổng mã nguồn C/C++, với cơ sở khoa học rõ ràng

và kết quả thực nghiệm tích cực. Luận án cũng phân tích quy

trình hoạt động của mô hình và đánh giá hiệu quả qua nhiều kịch

bản, đồng thời hướng dẫn lựa chọn tham số phù hợp.

23

KẾT LUẬN

Phát hiện lỗ hổng mã nguồn là vấn đề cấp thiết. Luận án đề

xuất mô hình cải tiến trích xuất đặc trưng mã nguồn dựa trên xử

lý ngôn ngữ tự nhiên và mạng đồ thị học sâu, tích hợp kỹ thuật

BDC và học tương phản để nâng cao hiệu quả phân loại.

Hai đóng góp chính của luận án bao gồm:

Thứ nhất: Luận án đề xuất mô hình phát hiện lỗ hổng mới

dựa trên hai nhiệm vụ chính: (i) trích xuất đặc trưng mã nguồn

bằng cách kết hợp RoBERTa và GCN trên CPG; (ii) áp dụng kỹ

thuật sinh dữ liệu. Được chứng minh tại [CT1, CT2, CT4].

Thứ hai: Đề xuất phương pháp nâng cao độ chính xác phát

hiện lỗ hổng bằng cách kết hợp GGNN để trích xuất đặc trưng và

học tương phản để cải thiện biểu diễn. Kết quả thực nghiệm cho

độ chính xác cao, có giá trị thực tiễn. Minh chứng tại [CT3, CT5].

Trong tương lai, một số phương pháp, kỹ thuật mới có thể

áp dụng để cải thiện các mô hình đề xuất trong luận án bao gồm:

(i) phương pháp tổng hợp và trích xuất thuộc tính mới, như sử

dụng học tăng cường trong việc trích xuất được các đặc trưng

trên các bộ dữ liệu chưa được gán nhãn,…(ii) áp dụng các mô

hình ngôn ngữ lớn để tổng hợp và trích xuất đặc trưng mã nguồn

thay vì sử dụng kỹ thuật nhúng đồ thị như hiện tại.

24

DANH MỤC CÔNG TRÌNH KHOA HỌC CỦA TÁC GIẢ

LIÊN QUAN ĐẾN LUẬN ÁN

[CT1].Van-Cong-Bui, Xuan-Do-Cho, Detecting software

vulnerabilities based on source code analysis using GCN

Transformer, in 2023 RIVF Int. Conf. Comput. Commun.

Technol. (RIVF), pp.112–117, Hanoi, Vietnam, 2023,

https://doi.org/10.1109/RIVF60135.2023.10471834.

[CT2].Cho Do Xuan, B.V.Cong, An advanced computing

approach for software vulnerability detection, Multimedia

Tools and Applications, vol. 83, pp. 86707-86740, June

2024, DOI: 10.1007/s11042-024-19682-y (ISI Q1).

[CT3].Bui Van Cong, Cho Do Xuan, A New Framework for

Software Vulnerability Detection Based on an Advanced

Computing, the Journal Computers, Materials & Continua,

vol. 79, no. 3, pp. 3699-3723, June 2024,

https://doi.org/10.32604/cmc.2024.050019 (ISI Q2).

[CT4].Bùi Văn Công, Đỗ Xuân Chợ, Đỗ Trung Tuấn, Hướng

tiếp cận phát hiện lỗ hổng phần mềm dựa trên mô hình kết

hợp Graph Transformer và Rebalancing Data, kỷ yếu Hội

nghị Khoa học công nghệ Quốc gia lần thứ XVII về

Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin

(FAIR), PTIT, Hà Nội, ngày 08-09/8/2024. DOI:

10.15625/vap.2024.0225.

[CT5].Bui Van Cong, Do Xuan Cho, Do Trung Tuan, Detection

of source code vulnerabilities using Nature language

processing and deep graph network, the Journal of Science

and Technology on Information security, vol. 23, no. 3, pp.

27-42, 2024, DOI: 10.54654/isj.v3i23.1057.

https://doi.org/10.32604/cmc.2024.050019

